A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables.

نویسندگان

  • Michael Smithson
  • Jay Verkuilen
چکیده

Uncorrectable skew and heteroscedasticity are among the "lemons" of psychological data, yet many important variables naturally exhibit these properties. For scales with a lower and upper bound, a suitable candidate for models is the beta distribution, which is very flexible and models skew quite well. The authors present maximum-likelihood regression models assuming that the dependent variable is conditionally beta distributed rather than Gaussian. The approach models both means (location) and variances (dispersion) with their own distinct sets of predictors (continuous and/or categorical), thereby modeling heteroscedasticity. The location sub-model link function is the logit and thereby analogous to logistic regression, whereas the dispersion sub-model is log linear. Real examples show that these models handle the independent observations case readily. The article discusses comparisons between beta regression and alternative techniques, model selection and interpretation, practical estimation, and software.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extended Beta Regression in R: Shaken, Stirred, Mixed, and Partitioned

This introduction to the extended features of the R package betareg is a (slightly) modified version of Grün, Kosmidis, and Zeileis (2012), published in the Journal of Statistical Software. Beta regression – an increasingly popular approach for modeling rates and proportions – is extended in various directions: (a) bias correction/reduction of the maximum likelihood estimator, (b) beta regressi...

متن کامل

Errors-in-variables beta regression models

Beta regression models provide an adequate approach for modeling continuous outcomes limited to the interval (0, 1). This paper deals with an extension of beta regression models that allow for explanatory variables to be measured with error. The structural approach, in which the covariates measured with error are assumed to be random variables, is employed. Three estimation methods are presente...

متن کامل

Bayesian and Iterative Maximum Likelihood Estimation of the Coefficients in Logistic Regression Analysis with Linked Data

This paper considers logistic regression analysis with linked data. It is shown that, in logistic regression analysis with linked data, a finite mixture of Bernoulli distributions can be used for modeling the response variables. We proposed an iterative maximum likelihood estimator for the regression coefficients that takes the matching probabilities into account. Next, the Bayesian counterpart...

متن کامل

Comparisons Between Some Estimators in Functional Errors - in - Variables Regression Models

We study the functional errors-in-variables regression model. In the case of no equation error (all randomness due to measurement errors), the maximum likelihood estimator computed assuming normality is asymptotically better than the usual moments estimator, even if the errors are not normally distributed. For certain statistical problems such as randomized two group analysis of covariance, the...

متن کامل

Estimating the Time of a Step Change in Gamma Regression Profiles Using MLE Approach

Sometimes the quality of a process or product is described by a functional relationship between a response variable and one or more explanatory variables referred to as profile. In most researches in this area the response variable is assumed to be normally distributed; however, occasionally in certain applications, the normality assumption is violated. In these cases the Generalized Linear Mod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Psychological methods

دوره 11 1  شماره 

صفحات  -

تاریخ انتشار 2006